您好、欢迎来到现金彩票网!
当前位置:热购彩票app下载 > 公用数据网 >

国内做大数据解决方案的公司有哪些?

发布时间:2019-07-04 18:35 来源:未知 编辑:admin

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  随着“大数据时代”的来临,企业越来越重视数据的作用,数据给企业带来的价值也越来越多。本文档将介绍大数据给企业带来的机遇与挑战以及企业的大数据解决方案。

  第一步先搞清楚什么是大数据?他不是简单的大量数据或海量数据,而是有着4V特征的数据金矿。他给我们的企业会带来机遇与挑战。

  第二步我们根据大数据的特征,分析企业大数据平台要迎接大数据的挑战,应该具备什么样的能力。

  第三部分,基于大数据平台要求,我们提出一个企业大数据的技术解决方案,介绍解决方案是如何解决大数据难题。

  一把柒叁耳零一泗贰五领,而是有着4V的特征。简单说就是体量大、样式多、速度快、价值低。

  体量大:最新研究报告,到2020年,全球数据使用量预计暴增44倍,达到35.2ZB。我们说大数据时,一般企业数据量要达到PB级才能称为大数据。

  样式多:除了量大,大数据还包括了结构化数据和非结构化数据,邮件,Word,图片,音频信息,视频信息等各种类型数据,已经不是以往的关系型数据库可以解决的了。

  速度快:这里说的是数据采集的速度,随着电子商务、移动办公、穿戴设备、物联网、智能小区等等的发展,数据产生的速度已经演进到秒级。企业要求能够实时获取数据,实时进行决策。

  价值低:指的是价值密度,整个数据的价值是越来越高,但是因为数据量的壮大,数据价值密度也相应降低,无价值数据要占据大部分,企业需要从海量的业务中寻找价值。

  从开发人员角度看,大数据和以往的数据库技术、数据仓库技术是不同的,他代表以Hadoop、Spark为首的一系列新技术。

  分布式:简单的说,分布式就是将复杂的、费时的任务拆分为多个细小的任务,并行处理。这里的任务就包含了数据采集、数据存储、数据处理。

  内存计算:实质上就是CPU直接从内存而非硬盘上读取数据,并对数据进行计算、分析。内存计算非常适合处理海量的数据,以及需要实时获得结果的数据。比如可以将一个企业近十年几乎所有的财务、营销、市场等各方面的数据一次性地保存在内存里,并在此基础上进行数据的分析。

  数据挖掘:大数据的核心实际上还应该包括数据挖掘技术,这是一个和统计学联系紧密的技术,粗略的划分为分类、聚类、预测、关联四大类,可从大量的、不完全的、模糊的数据中利用数学方法,提取出潜在的规律或知识。

  大数据的能力分为数据采集、数据存储、数据计算或处理、数据挖掘、数据展现五个方面。

  数据存储:对应大数据特点,需要大容量、高容错、高效率的存储能力,这是数据利用的基础。

  数据计算:需要强大、廉价、快速的数据处理货计算能力,强大对应大数据的量大、类型多,廉价对应大数据的价值密度低,快速对应大数据的速度快,这是大数据能够发展的关键。

  数据挖掘:要能够全角度、多方位的立体分析挖掘数据价值,应用好数据挖掘才能将数据转化为价值,这是数据利用的核心。

  数据展现:多途径、直观、丰富的数据展现形式是数据的外在形象,这是数据应用的亮点,是能够得到用户认可的窗口。

  企业大数据解决方案从数据处理流程上分为数据采集层、数据存储层、数据计算层、数据挖掘层、数据展现层,每一层解决大数据所需的关键难题。其中标黄的部分是传统数据处理技术。

  数据采集技术分为实时采集和定时采集,实时采集采用Oracle GoldenGate等工具,实时增量采集数据,保证数据的及时性;定时采集采用SAP Data Services等工具相结合的方式,定时抽取数据,主要用于大批量、非实时性数据。加入kettle、sqoop等分布式ETL工具,丰富多样化数据抽取服务,同时加入整合实时数据的kafka服务,处理大量实时数据。

  数据存储区在传统oracle的基础上,加入分布式文件系统、分布式列式数据库、内存文件系统、内存数据库、全文搜索等模块。其中,分布式文件系统ceph由于拥有数据分布均衡,并行化度高等特性,所以用于存储非结构化数据;分布式文件系统Hdfs由于拥有极佳的扩展性和兼容性,用于存储其他结构化数据;列式存储数据库hbase主要用于存储特定需求的海量数据,以供运算查询等服务。

  计算层采用标准SQL查询、全文搜索、交互分析Spark、实时数据处理Streaming、离线批处理、图计算Graph X等技术,对结构化数据、非结构化数据、实时数据、大批量数据进行数据计算处理。

  数据挖掘层:采用Spark_Mllib、R、Mhout等分析工具,依据模型分析引擎创建模型、算法库。由模型算法库对模型进行训练,生成模型实例,最后依据模型实例进行实时决策及离线决策。

  数据展现层:提供门户展现、数据图表、电子邮件、办公软件等多种数据分析方式,在展现途径上可支持大屏幕、电脑桌面、移动终端等。

  随着高性能计算机、海量数据的存储和管理的流程的不断优化,技术能够解决的问题终将不会成为问题。真正会制约或者成为大数据发展和应用瓶颈的有三个环节:

  任何企业或机构从人群中提取私人数据,用户都有知情权,将用户的隐私数据用于商业行为时,都需要得到用户的认可。然而,目前,中国乃至全世界对于用户隐私应当如何保护、商业规则应当如何制定、触犯用户的隐私权应当如何惩治、法律规范应当如何制定等等一系列管理问题都**滞后于大数据的发展速度。未来很多大数据业务在最初发展阶段将会游走在灰色地带,当商业运作初具规模并开始对大批消费者和公司都产生影响之后,相关的法律法规以及市场规范才会被迫加速制定出来。可以预计的是,尽管大数据技术层面的应用可以无限广阔,但是由于受到数据采集的限制,能够用于商业应用、服务于人们的数据要远远小于理论上大数据能够采集和处理的数据。数据源头的采集受限将**限制大数据的商业应用。

  大数据对基于其生态圈中的企业提出了更多的合作要求。如果没有对整体产业链的宏观把握,单个企业仅仅基于自己掌握的独立数据,无法了解产业链各个环节数据之间的关系,对消费者做出的判断和影响也十分有限。在一些信息不对称比较明显的行业,例如银行业以及保险业,企业之间数据共享的需求更为迫切。例如,银行业和保险业通常都需要建立一个行业共享的数据库,让其成员能够了解到单个用户的信用记录,消除担保方和消费者之间的信息不对称,让交易进行的更为顺利。然而,在很多情况下,这些需要共享信息的企业之间竞争和合作的关系同时存在,企业在共享数据之前,需要权衡利弊、避免在共享数据的同时丧失了其竞争优势。此外,当很多商家合作起来,很容易形成卖家同盟而导致消费者利益受到损失,影响到竞争的公平性。大数据最具有想象力的发展方向是将不同的行业的数据整合起来,提供全方位立体的数据绘图,力图从系统的角度了解并重塑用户需求。然而,交叉行业数据共享需要平衡太多企业的利益关系,如果没有中立的第三方机构出面,协调所有参与企业之间的关系、制定数据共性及应用的规则,将**限制大数据的用武之地。权威第三方中立机构的缺乏将制约大数据发挥出其最大的潜力。

  大数据可以从数据分析的层面上揭示各个变量之间可能的关联,但是数据层面上的关联如何具象到行业实践中?如何制定可执行方案应用大数据的结论?这些问题要求执行者不但能够解读大数据,同时还需深谙行业发展各个要素之间的关联。这一环节基于大数据技术的发展但又涉及到管理和执行等各方面因素。在这一环节中,人的因素成为制胜关键。从技术角度,执行人需要理解大数据技术,能够解读大数据分析的结论;从行业角度,执行人要非常了解行业各个生产环节的流程的关系、各要素之间的可能关联,并且将大数据得到的结论和行业的具体执行环节一一对应起来;从管理的角度,执行人需要制定出可执行的解决问题的方案,并且确保这一方案和管理流程没有冲突,在解决问题的同时,没有制造出新的问题。这些需求,不但要求执行人深谙技术,同时应当是一个卓越的管理者,有系统论的思维,能够从复杂系统的角度关联地看待大数据与行业的关系。此类人才的稀缺性将制约大数据的发展。

http://e-ndicus.com/gongyongshujuwang/698.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有