您好、欢迎来到现金彩票网!
当前位置:热购彩票app下载 > 公钥加密 >

一文读懂椭圆曲线加密学

发布时间:2019-05-10 02:49 来源:未知 编辑:admin

  椭圆曲线加密是一种加密数据方法,只有特定人,才能对其进行解密。它在现实生活中有许多应用场景,但其主要应用在于加密互联网上的数据与流量。例如,椭圆加密曲线可以用于确保一封邮件何时发送,且除了收件人外无人可以读取该邮件。

  技术公钥加密风情万千,椭圆曲线加密只是其中一种风味。其他加密算法还有RSA,DiffieHelman,等等。我将简单交代公钥加密的大体背景作为开头,进而展开我们后续的阐述,以此更深入理解椭圆曲线加密。有空时,你可以花些时间深入研究公钥密码学知识。

  上图展示了两个钥匙,一个公钥和一个私钥。这些密钥用于加密和解密数据,这使得世界上的任何人都可以在传输时看到加密数据,但无法读取信息。

  运作的:陷门函数所有公钥加密算法的关键在于它们各自都有其独特的陷门函数。陷门函数只能被单向计算,或者至少只能容易地单向计算(使用现代计算机在不到几百万年的时间内)

  什么让椭圆曲线加密与众不同人们使用椭圆曲线加密的理由跟RSA完全相同。它生成公私钥对并允许两方安全沟通。然而,椭圆曲线加密有一胜过RSA的优势。椭圆曲线 位数的密钥所提供的安全性与RSA算法中 3072 位数密钥所提供的安全性相同。这意味着在资源有限的系统中,如智能手机、嵌入式电脑、加密网络,椭圆曲线加密相较于RSA加密算法,它使用的硬盘空间和带宽不到RSA算法的10%。(蓝狐笔记译注:也就是说,椭圆曲线加密比RSA算法在资源有限的情况下,更省资源,可行性更高。)

  加密的陷门函数这可能是绝大多数读者阅读本文的原因。这是椭圆曲线加密有别于RSA加密算法的部分,也是它的特殊之处。陷门函数类似于池中的数学游戏。我们从曲线上的某一点开始。我们使用一个“点函数”(dot function)来发现一个新的点。不断重复“点函数”并围绕曲线跳跃(hop),直到我们最终抵达最后一个点上。让我们看看以下整个算法。

  问题吗?以下是我初次了解椭圆曲线加密时所产生的相关问题。希望我能妥善地解决它们。

  ?如果点函数(dot function)只是在两点之间画一条线,难道不需要第二点来帮助开始吗?回答:不需要。第二点(我们将其称为下图中的-R点)实际上是P点函数P(让我们假设第一个点被称为P)

  如果线没有抵达靠近原点的曲线,我们实际上可以定义一个最大X值,其中线将回绕并从头开始。

  创建的?它们是如何与要加密的数据一起使用的?这是一个好问题,但它要求更深入的答案。在这篇文章中我给出了关于RSA与椭圆曲线加密较为通俗的解释。然而,还有更多技术资源,我期望你去研究它们。

http://e-ndicus.com/gongyuejiami/102.html
锟斤拷锟斤拷锟斤拷QQ微锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷锟斤拷微锟斤拷
关于我们|联系我们|版权声明|网站地图|
Copyright © 2002-2019 现金彩票 版权所有